全体の知覚、部分の知覚—森を見て、木を見る

たなかひでき
田中秀樹
科学技術振興事業団

ふじた いちら
藤田一郎
科学技術振興事業団、大阪大学大学院基礎工学研究科認知科学（〒560-8531 豊中市待兼山1-3）
E-mail: fujita@bpe.es.osaka-u.ac.jp

SUMMARY

物体視覚像は全体と部分からなる。日常、全体と部分の知覚が別のものであることを意識することは少ないが、一瞬一瞬、われわれはいずれかのレベルでの知覚を行っている。脳損傷患者の示す選択的障害や脳イメージングの結果は、大脳皮質右半球が全体の知覚に、左半球が部分の知覚に関与することを示しているが、両半球のどの領域が全体部や部分の知覚に選択的に寄与しているかは不明である。最近、われわれは、サルがヒトと同じ様の全体・部分の知覚を有している行動学者の証拠を得た上で、サルに陽電子断層撮影（PET）法を適用し、図形全体の形態を弁別するときには下側頭皮質後部（TEO鼻）がより強く活動し、図形要素の形態を弁別するときには下側頭皮質前部（TE野）がより強く活動することを見いだした。

KEY WORDS

陽電子断層撮影（PET）法
マカカ属サル
全体と部分
下側頭皮質

はじめに

われわれは眼から入ってくる物体像のすべてを知覚するわけではない。例えば、自動車を運転しているときに交通標識の細部を見ることはなく、標識全体を見でその標識の意味を理解する。標識の各部分をじっくり見ていっては、交通事故を引き起こすかもしれない。その場の状況に応じて、物体像に含まれる必要な情報を知覚するのである。図1は江戸時代最後期から明治時代初期に活躍した歌川芳鏡の浮世絵である（図1A）。健常者であれば、絵全体に注意を向けると化け猫の顔を知覚し、絵の各部分に注意を向けると猫や鈴を知覚することができる。しかし、脳の部分的損傷の結果、化け猫が知覚できるにも関わらずそれを構成する小さな猫たちや鈴を知覚できなかったり、その逆に化け猫が知覚できなかったりすることがあり得るのである。

大脳視覚領域の発達を示した研究から（図1B)、図形の全体の特徴の処理は右大脳半球で、図形の部分的特徴の処理は左大脳半球で行われることが示唆されている。健常者での陽電子断層撮影（PET）法や機能的核磁気共鳴撮影（fMRI）法を使った研究でもこれらの大脳半球間の機能差は認められている29。しかしながら、各半球のどの領域がそれぞれの処理に関わっているのかについて過去の報告は一致しておらず、またヒト大脳視覚領域における生理学的・解剖学的知識が乏しいことから、これらの知覚障害を視覚情報処理の観点から説明することは困難である。

1. サルを使った全体と部分の知覚の研究

物体像や図形の全体と部分の知覚に関する神経基盤

90 (90) 脳 21 Vol. 4 No. 1 2001
图1 ヒトにおける全体と部分の知覚
A：五拾三次之門将之怪，歌川芳藤作。
B：ヒト大脳半球の機能局在を示す実験。図3A（a，b）を被験者に3秒間提示し、15秒後に図形を想起させ、その図形を描画させる。右半球損傷者では図形の各部分（Zや□）は無視されて描かれていない（c，d）。逆に、左半球損傷者では図形全体の形態（Mや△）は正しく描けているが、図形の各部分（Zや□）は無視されて描かれていない（e，f）。参考文献1より改変。

を明らかにするためには、大脳視覚領域の生理学的・解剖学的研究が詳細に行われている実験動物を使った研究が必要である。しかし、その動物がヒトと同様の全体・部分の知覚を行っていないわけではない。われわれ、その視覚系の構造が最もよく解析されているマカカ属サル（ニホンザル）を用いてこの問題に取り組んだ。

ヒトでは図形全体の形態の知覚は、その部分の形態の知覚よりも速いことが心理学実験で示されている。そこでわれわれは、この現象がサルにおいても観察されるかどうかを確かめた。階層構造をもった視覚刺激図形を使い（図2A），図形全体の形態（図2Aでは逆向きのN）や図形要素の形態（図2AではN）を弁別するようにサルを訓練し、反応時間の解析を行ったところ、ヒトと同様にサルにおいても、図形全体の形態は図形要素の形態よりも速く弁別していた。サルにおいても、「森を見て木を見る」のである。この結果から、ヒトとサルの視覚領域の一表に、全体と部分の形態処理に関する共通の神経基盤が存在すると考えられる。

サル大脑視覚領域では、物体の形態情報は後頭皮質から下脳皮質に向け大脳視覚経路で処理される（図2B）。われわれが行った心理学的実験の結果からは、図形全体の形態の弁別は大脳視覚経路のより低次に視覚領域が関与し、要素図形の形態の弁別はより高等の視覚領域が関与すると予想される。この予想を確かめるために視覚弁別試験を行うに当たってのサルにPET法を適用した、図形全体の形態を弁別するときには下脳皮質後部（TEO野）が図形要素の形態を弁別するときにより強く活動した。逆に、図形要素の形態を弁別するときには下脳皮質前部（TE野）が図形全体の形態を弁別するときにより強く活動した。ヒトで
全体の知覚、部分の知覚—森を見て、木を見る

報告されている左右半球間の機能差は確認できなかった。

下側頭皮質は脳側視覚経路の最終段と考えられており、主に解剖学的研究から下側頭皮質はその前後端に沿ってTEO野とTE野に分類される5)。また、脳側経路では神経細胞の受容野の大きさは高次の野野になるにつれて大きくなる一方で、TE野神経細胞の視覚応答の大きさは図形局所の形態の大きい変化により顕著に変化する9)。これらは、TE野が物体の全体像の処理に関わる可能性と物体局所の特徴の処理に関与している可能性という矛盾した二つの可能性を提起する。

PET法では類似した視覚応答特性をもった神経細胞群の活動は検出できるが、少数の神経細胞が物体の全体像の処理に関わっているとしてもその活動は検出できない。われわれの結果はTEO野で図形全体の処理に関わる神経細胞の数の比率が多く、TE野では図形局所の処理に関わる神経細胞の数の比率多いことを示している。全体と部分の形態処理という側面から、下側頭皮質がTEO野とTE野に機能分化していることが示唆される。

2. 今後の展望

サルにPET法を適用することで、図形の全体と部分の知覚に関わる脳視覚野を同定することができた。神経細胞の活動レベルで全体と部分の知覚に関わる神経基盤を明らかにしたうえで、単一細胞活動記録などの手法でTEO野とTE野の神経細胞の視覚応答特性を調べることが要求される。また、ヒトでは全体と部分の知覚の認識観記録が強力に関与していることが報告されており10)、サルにおいても分子生物学的手法を利用した研究も期待される。

参考文献